hold_find 發表於 2007-3-15 10:32 PM
[quote]Originally posted by [i]奇[/i] at 2007-3-15 10:06 PM:
問題是...那麼另一個"都是女孩子"的機率是多少?
就是1/2了,如果是問組合的可能性,就1/3... [/quote]
唔係好明你問乜...:haha::haha::haha:
奇 發表於 2007-3-15 11:04 PM
[quote]Originally posted by [i]hold_find[/i] at 2007-3-15 10:32 PM:
唔係好明你問乜...:haha::haha::haha: [/quote]
不是問,是答....
hold_find 發表於 2007-3-15 11:16 PM
[quote]Originally posted by [i]奇[/i] at 2007-3-15 11:04 PM:
不是問,是答.... [/quote]
sor~~
因為見到問號,以為係問...
playbr2 發表於 2007-3-15 11:22 PM
[quote]Originally posted by [i]kantang4910[/i] at 2007-3-15 08:49 PM:
『根本那些所為天才,智者...全部應统稱為鬼辯家
明明最初是三選一的三份一機會,及三份二的機會
但無論任何情況下,主持都從餘下兩度門中選出一度空門
在新的情況下,根本是兩度門中選一度門的二份一機會,
[color=Blue]天才們卻硬要將新情況和舊情況混為一談(這是盲點1)[/color]
[color=Blue]其實三份二機會是包括了那一度空門,但誰會選它?(這是盲點2)[/color]
[color=Blue]分清盲點[/color]後,答案其實非常簡單,祗是有人要標奇立異吧了』
如果你話跟據數學範籌,咁[color=Red]你應先否定我嘅理論[/color],而唔係找另一個例子作比喻,這種方法祗有鬼辯家才用的
[color=Red]如是數學理論,應像我用同一例子去辯証[/color] [/quote]
你既理論係咩??? ...... 你d所謂盲點 好抽像喎:confused: , 你所指既''盲點''代表咩野 ??? 可否舉例呢?!? .... 同埋, 請問点去''分清盲點'' .....可否講解一下
netharmon 發表於 2007-3-15 11:33 PM
[quote]Originally posted by [i]lilirayhk[/i] at 2007-3-14 01:15 PM:
答案一定係1/3。我想問題重點係在於 主持人係知邊度門有車, 佢係特登開一度無車的門比你睇, 即係話無論你第一次中唔中架車, 佢都會開一度空門。大部分網友confuse 左一樣野, 就係二選一, 機會率就一定係1/2, 佢地忽略左個 condition, 其實個condition 係好重要的。如果再講白d, 即係有三度門 "車" "空1" "空2", 如果你會轉軑的話, Condition one: 你一開始choose 左"車"的話, 你就無車la, Condition two: 你一開始choose 左"空1"的話, 主持人then 開"空2", 你轉軑, win 左車, Condition three: 一開始choose 左"空2"的話, 主持人then 開"空1", 你轉軑, win 左車。即係話轉軑 win 的機率係 2/3 (3個condition 有2個中ma)。我都知我講得好唔清楚, 不過盡左力ga lar, 熟知呢條題目的人應該都知佢好難講得明明白白, 如果唔係都唔會討論成200頁la! 包涵包涵[/quote]
但係第一個Condition 好似要 x 2 喎, 因主持開"空1" or 主持開"空2"
[[i] Last edited by netharmon on 2007-3-15 at 11:41 PM [/i]]
netharmon 發表於 2007-3-15 11:38 PM
如果真係 2/3 同 1/2 咁大差異, 不如寫個 Program 來 Simulate 10000000 times 睇吓 如果轉的勝出 是近 1/2 定 2/3.
kantang4910 發表於 2007-3-15 11:53 PM
[quote]Originally posted by [i]playbr2[/i] at 2007-3-15 11:22 PM:
你既理論係咩??? ...... 你d所謂盲點 好抽像喎:confused: , 你所指既''盲點''代表咩野 ??? 可否舉例呢?!? .... 同埋, 請問点去''分清盲點'' .....可否講解一下 [/quote]
我將整件事講得咁清楚你都要我舉例,我仲有乜例要舉?
要討論就用番件事做依歸,唔好用第二個例子做比較
如果你話所謂盲點抽像,咁我直頭話你在那兩個方錯誤了,而令人混淆
跟住所分析都係錯,咁會唔會清晣啲?
playbr2 發表於 2007-3-15 11:55 PM
[quote]Originally posted by [i]netharmon[/i] at 2007-3-15 11:38 PM:
如果真係 2/3 同 1/2 咁大差異, 不如寫個 Program 來 Simulate 10000000 times 睇吓 如果轉的勝出 是近 1/2 定 2/3. [/quote]
你都未明條題目......結果吾重要,因為只有二個結果 ''鸁''同 ''輸'' .......所以做一千次一萬次都好, 結果還結果 ........ ''一件事完完全全發生一次'' 其當中所包含o既機率係每次一樣既..............大家都知道 ''結果所出現的次數'' 與 ''會機率'' 不一定成正比.......除非該事件發生之''機率'' 為 =1 或 =0
kantang4910 發表於 2007-3-15 11:58 PM
[quote]Originally posted by [i]playbr2[/i] at 2007-3-15 11:55 PM:
你都未明條題目......結果吾重要,... [/quote]
又來鬼辯
機會率唔係 事件出現次數/所有情況出現次數 又係乜呢?
playbr2 發表於 2007-3-16 12:08 AM
[quote]Originally posted by [i]kantang4910[/i] at 2007-3-15 11:53 PM:
我將整件事講得咁清楚你都要我舉例,我仲有乜例要舉?
要討論就用番件事做依歸,唔好用第二個例子做比較
如果你話所謂盲點抽像,咁我直頭話你在那兩個方錯誤了,而令人混淆
跟住所分析都係錯,咁會唔會清晣啲?[/quote]
我知你一直講e件case , 但我吾係你 , 你個腦諗乜我吾會知
你講得好''清楚''.....盲点ㄚ嘛.....
咁我又跟足你一樣既方法去講清楚e件事:)
======================================
明明最初是三選一的三份一機會,及三份二的機會
但無論任何情況下,主持都從餘下兩度門中選出一度空門
在新的情況下,根本是兩度門中選一度門的二份一機會,
天才們卻硬要將新情況和舊情況混為一談(這是跟據數學)
其實三份二機會是包括了那一度空門,但誰會選它?(這是跟據數學)
跟據數學後,答案其實非常簡單,祗是有人不明白罷了
==========================================
我咁解釋你又明吾明.........係咪同你講d野一樣咁含糊呢:D:D:D:D
[[i] Last edited by playbr2 on 2007-3-16 at 12:24 AM [/i]]
playbr2 發表於 2007-3-16 12:23 AM
[quote]Originally posted by [i]kantang4910[/i] at 2007-3-15 11:58 PM:
又來鬼辯
機會率唔係 事件出現次數/所有情況出現次數 又係乜呢? [/quote]
係喎你岩:good::good::good:
老師:)咁我有野問;)
我有一粒''正常''既骰子 ....它有六個面 ,為 1 至 六
抽中''任何''一面o既 機會率唔係 六分一呢
咁我而加擲 骰子 6次 ..... ''結果'' 全部6次 都擲出 1
係咁我應用 ----> 事件出現次數/所有情況出現次數
6/6 = 1 , 『 結論 : 一粒''正常''骰子有六個面 , 但擲出 1 的機會率係100%, 不會有其他結果 』
..................咁又岩吾岩呢......如果吾岩.....係咪因為 機會率 與 事件出現次數 不會成一定比例呢
lilirayhk 發表於 2007-3-16 12:48 AM
[quote]Originally posted by [i]hold_find[/i] at 2007-3-15 08:34 PM:
這是對的,因為它說"其中一個... [/quote]
試想想 一個有兩個波的袋, 波一係就白色, 一係就黑色, 你而家攞其中一個波出黎睇, 發現係黑色wo, 咁另一個波係黑色的機會率又會唔會係1/3 呢?
PG-13 發表於 2007-3-16 01:02 AM
[quote]Originally posted by [i]netharmon[/i] at 2007-3-15 11:38 PM:
如果真係 2/3 同 1/2 咁大差異, 不如寫個 Program 來 Simulate 10000000 times 睇吓 如果轉的勝出 是近 1/2 定 2/3. [/quote]
Stimulator... [url]http://www.userpages.de/monty_hall_problem/[/url]
OF COZ THERE IS STIMULATOR! its a world known mathmatical problem, and there are of coz more than 1 stimulator on the internet.. search it for more if u think this ones fake:P:D:D:D:):D
PG-13 發表於 2007-3-16 01:17 AM
[quote]Originally posted by [i]playbr2[/i] at 2007-3-15 04:25 PM:
[size=5][color=Green]引文一篇[/colo... [/quote]
The comment is wrong, without another knowingly choose it for u, the probablity will be the same.
first, Player 3 choose 1 ( win, lose, lose),
*before opening the door, the porbably of each door is 1/3 for winning
then, host 2 choose 1 (lose, lose) with the probabilty of 1/3 to pick this set or ( win, lose) with the probability of 2/3 ,<-- this interferance is critical because the host have to choose the lose door in either situation.
The host' probability of holding a winning door would be 1/2. Because in the cases of (lose, lose) with the probability of 1/3, he has to open the lose door, which left ( lose) door. And in the ( win, lose) case with the probability of 2/3, the host has to open the lose door, which left ( win).
As a result, with knowingly open ( lose) door, there are only 2 outcomes:
( win)or ( lose). However, because the chance of picking a (lose, lose) is only 1/3, there are 2/3 of chance that the host will have ( win)
So the probability is 2/3
--------------------------------------------------
In case the host DOES NOT knowingly open the ( lose) door
first, Player 3 choose 1 ( win, lose, lose),
*before opening the door, the porbably of each door is 1/3 for winning
then, host 2 choose 1 (lose, lose) or ( win, lose),
Without knowingly open the ( lose) door the host's probability of holding a winning door would be 1/2. Because in case of (lose, lose) with the porbability of having this set is 1/3 and in case of (win, lose) the porbability is 2/3.
So,withouth knowingly pick the set, the chance shall be [1/2x1/3 +1/2x2/3]=1/2
am not expert in stats and i dont think my ans is right anyways:P
[[i] Last edited by PG-13 on 2007-3-16 at 02:10 AM [/i]]
小小康 發表於 2007-3-16 01:37 AM
**** 作者被禁止或刪除 內容自動屏蔽 ****
奇 發表於 2007-3-16 01:48 AM
[quote]Originally posted by [i]小小康[/i] at 2007-3-16 01:37 AM:
[size=4][color=Red]黃興桂+田雞o既理... [/quote]
田雞?最後唔係掉進gap中嗎?:naughty:
guswan 發表於 2007-3-16 01:54 AM
[quote]Originally posted by [i]小小康[/i] at 2007-3-16 01:37:
[size=4][color=Red]黃興桂+田雞o既理... [/quote]
但係黃興桂有半越位同半單刀bor..............................
:nogood:
playbr2 發表於 2007-3-16 02:07 AM
[quote]Originally posted by [i]奇[/i] at 2007-3-16 01:48 AM:
田雞?最後唔係掉進gap中嗎?:naughty: [/quote]
:confused::confused::confused:吾明:haha:
playbr2 發表於 2007-3-16 02:13 AM
[quote]Originally posted by [i]PG-13[/i] at 2007-3-16 01:17 AM:
The comment is wrong, without a... [/quote]
:eek::eek::eek:.................死仔!!!! 改內容 :fight::fight::fight::fight:
你頭先篇野睇到我一頭霧水[img]http://i72.photobucket.com/albums/i162/xcopy/penguin/pen1_55.gif[/img], 正想回覆比你知你計漏左野......好彩再睇多次咋:haha::haha::haha:
奇 發表於 2007-3-16 02:20 AM
[quote]Originally posted by [i]playbr2[/i] at 2007-3-16 02:07 AM:
:confused::confused::confused:吾明:haha: [/quote]
少林足球,田雞話唔係公就字,結果個硬幣掉進gap中
頁:
1
2
3
4
[5]
6
7
8
9
10