Board logo

標題: [轉]身份證號碼的秘密 [打印本頁]

作者: leeyanta    時間: 2005-7-2 10:07 PM     標題: [轉]身份證號碼的秘密

係香港,每一個居民都會獲發一張身份證,證上的號碼一共分為 3 個部分:第一個部分是由 1 個或 2 個英文字母所組成,第二部分是 6 個數目字,第三部分有 1 對括號,中間是 1 個數目字或者是英文字母 “A”。例如:“H856249(2)” 就是一個通常見到的身份證號碼了。
$ d& c: U. S7 ~
0 c8 P# ~' d7 Y$ X3 J* d$ i5 H7 B: L: S相信年滿 30 歲的居民都會記得,大約在 20 年前,身份證號碼原本是沒有那個括號部分的,祇是某一年,政府更換了一張「電腦化」的身份證之後,才加上這個部分的。記得當年民間就流傳了很多傳聞,猜測那個括號中的數字,倒底有甚麼意義。(我亦曾經聽過一些傳說,十分可笑,但現在不一一細表了。)不過,自從有人在一些介紹趣味數學的刊物、網頁,又或者是一些電腦雜誌、教科書中解釋了這個括號中的數字是怎樣計算出來之後,這些傳聞就漸漸消失了。
' r; ]7 u/ h: H6 C6 [1 L9 @3 o! F7 K% Y

- a3 d" g! l9 d) l2 l0 X7 ?# Z1 Q原來,這個數字是用以下方法計算出來的:  k8 H: l* k. V' N# J
首先,我們將身份證號碼中第一部分的英文字母,按字母的次序轉換成一個數字。例如:“A” 就轉成 “1”,“B” 就轉成 “2”,其餘的如此類推。然後將身份證號碼中的每一個數字(包括由字母轉換成的數字),由左至右,分別乘以 8、7、6、5、4、3、2 等數值,並將結果加起來。(如果身份證號碼有 2 個英文字母,則第一個字母應該乘以 9,其他數字則同上。)) M* b4 A9 k8 L9 M6 Y6 o0 J

, b7 r5 J6 S( e2 G, N/ u; |例如:我在上面提過的身份證號碼,如果不理括號裏面的數字,應該是 “H856249”。先將 “H” 轉換成 8,然後由左至右乘以上述的倍數並求和,得
1 D0 G0 z( d5 h3 k% X7 m
; p" R. ]  L/ x$ W" \+ J8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 = 218: N8 @8 n0 J5 k3 v8 d+ j

( C; _, z/ I, s0 r$ [跟著就按以下的步驟計算出括號中的數字:先將上述的總和除以 11,如果整除,那麼括號內的數字就等於 0;如果有餘數,那麼就將 11 減該餘數,所得的差就是括號內的數字了。萬一那個差等於 10,就將括號內的數字定為 “A”。, C  L2 _, P/ y5 S0 A' \  R4 N

/ U$ d; Y, _% S9 M7 ~( h例如:在上面的例子中,我們將 218 除以 11,得餘數 9,所以括號中的數字就等於 11 - 9 = 2,整個身份證號碼就變成 “H856249(2)” 了。
/ o+ J" J# T( |' U# B# A
: ?9 R8 }/ O1 ~" q' _; o又如果身份證號碼是 “H856049”,那麼總和將會是 210,餘數是 1,差是 10,所以括號中的數字就應該是 “A” 了。) l! B; ?9 U$ N& m5 a; Z. E

* Q) ?5 `' C% w# B. C& J: W8 Y5 Y$ t原來身份證中的括號數字,就是這樣計算出來的!不過,大家有沒有想過,為甚麼我們要在原有的身份證號碼後面,加多 1 個數字呢?將身份證號碼裏的數字兜兜轉轉地計算一番,到底有甚麼意義呢?7 J" b9 H& D' F8 ?3 s* g) ^+ a
7 b- ~! g* A' i
我曾經讀過一些文章,解釋使用括號數字的原因,是為了防止非法入境者偽造身份證!文章作者表示:因為偽造身份證的歹徒並不知道身份證號碼的秘密,當警察在街上截查身份證時,可以通過以上的計算,分辨出身份證的真偽!* W6 e2 d$ j, w! _" x' H1 \3 f
" z8 f& B4 r0 \+ `; J* K- d
不消說,相信大家都會覺得以上的解釋荒謬之極!第一、既然我可以知道身份證號碼的計算方法,偽造身份證的人又怎可能不知?第二、相信大多數人在計算上述身份證號碼的總和與及餘數時,都會用計算機來輔助計算,我很懷疑在街上巡邏的執法人員,他們是否每一位都有如此強的心算能力,能夠即時進行上述的運算?故此,身份證號碼中的括號數字是用來仿偽的解釋,似乎並不合理。2 j& W$ @3 [2 F$ V  i, V( C1 I& c
. s5 E( M, @6 b! }+ P
那麼,這個數字又有甚麼用處呢?+ E! L+ {/ X1 a
# j3 h- A& b+ R1 q% {" Q0 t
大家知道,不同的人會有一個不同的身份證號碼,所以身份證號碼是一個用來識別巿民的最簡單方法。我們在日常生活之中,有無數的地方,都需要到這個號碼。正因為它簡單,亦正因為它重要,我們不應該在紀錄或抄寫的過程之中,將身份證號碼搞錯,否則可能會帶來非常嚴重的後果。
) K* _. [" j' F6 ~& S4 W  j# [6 h& q, x; q0 b
但在以前,當我們印發身份證的時候,所有號碼都是緊貼在一起的,例如:“H856249” 這號碼之前的 “H856248” 和之後的 “H856250” 都屬於另一個人。萬一我們誤將 “H856249” 錯寫為 “H856248”,那麼就會有麻煩了!但是,這祇是 1 個數字之差,我們亦不容易察覺到這個錯誤。
( V  O7 y, e% @7 x5 A; V' K7 a9 ~$ k# r5 W, S5 G4 O
為了解決以上的問題,我們引入了一個括號數字,術語上,我們稱它為「核對數位」(check digit)。引入這個核對數位最簡單的目的,就是將原本緊逼在一起的號碼分開,因為我們祇會從 0 至 9 或 A 中選擇其中一個數字作為這個核對數位,所以每個身份證號碼之間,都會有 11 個數字的「距離」。
5 ]" E! r8 ?8 a) h5 M3 ^% t
" K5 m7 [! |: ^  g  d第二、由於電腦的發明,當我們將資料輸入電腦時,我們同時可以指示電腦檢查那身份證的號碼是否正確,從而防止輸入資料時的人為錯誤。事實上,檢查身份證號碼是否正確的方法,比計算核對數位的方法直接得多,方法如下:
" p. F! ~! _+ z7 q3 ]9 v9 c) X4 S5 A3 d1 \8 \# ]6 y! @) X
首先,我們依舊將身份證號碼中第一部分的英文字母轉換成數字。然後將身份證號碼中的每一個數字(包括核對數位),由左至右,分別乘以每個位的「位值倍數」,即 8、7、6、5、4、3、2 和 1(即將核對數位乘以 1),並將結果加起來,以後稱這個值為「核對值」。最後,將這個核對值除以 11。留意核對數位是將 11 減去前面 7 個位乘以其位值倍數之和除以 11 後的餘數,故此,連同核對數位計算出來的核對值,必定能夠被 11 整除。因此,如果我們發覺核對值不能被 11 整除,那麼輸入的身份證號碼就一定有錯了。(注意:電腦的運算速度非常之高,將身份證號碼輸入電腦後,一按鍵,它就可以完成有關的驗算,相信連使用電腦的人,亦不會察覺到電腦其實已做了很多次的計算!)
6 w( L7 A+ h: t- f; ~% m. r8 W9 M- L) H" P4 u
例如:“H856249(2)” 是一個正確的號碼,按上述方法計算出的核對值等於3 y0 p2 Q- Q6 a7 i$ y7 S- w

% T) C6 B$ N* y0 ]" A1 x( }8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 + 2 ´ 1 = 220
3 T9 M% i5 p4 Q, G7 I. t  ]+ b- f! f7 b6 J8 p$ {
明顯這個數能夠被11所整除。假如在輸入資料時,將其中 1 個位的數字或字母搞錯,例如:變成 “K856249(2)”、“H856049(2)” 或 “H856249(A)”,那麼計算出來的核對值就會分別變成 244、212 和 228。由於這些數值不能被 11 整除,因此我們便知道這些號碼有錯了。; y# a6 h) n7 u4 q/ o

* z; _& g$ V5 h0 A事實上,如果一個身份證號碼的正確核對值為 A,而在輸入資料時,(由右邊數起的)第 k 個位原本是 a,但現在錯入成 b(a ¹ b),那麼該核對值將會變成! f% r! z0 b- w- U
3 j4 N4 F3 h1 V9 q& c; ]
A - a ´ k + b ´ k = A + (b - a) ´ k
+ p+ r$ o) F4 d/ {+ ]
, x1 J2 H' J  Z$ D) w5 I留意在這裏,除非錯誤發生在第一個位的英文字母上,否則 (b - a) 的絕對值和k都祇會是 1 至 10 之間的數字,不會大於 11,故此 (b - a) ´ k 這個部分,不可能被 11 整除。但因為 A 本身可以被 11 整除,所以整個核對值 A + (b - a) ´ k,便不能被 11 所整除了。由此可以知道輸入的資料有錯。
5 F0 P1 k+ h# `- o/ t. P; e4 j- _9 `
2 o6 r$ O0 ^" j) P當然,應用核對值的方法有一個死穴,就是頭一個字母如果錯入了一個和原本字母相隔 11 個位的字母,例如:將 “H856249(2)” 錯入成 “S856249(2)”(其核對值為 308,可以被 11 整除),那麼電腦亦無法知道到輸入的資料有錯了。不過,相信發生如此錯誤的機會極之小,所以這個方法亦相當可靠。
1 d8 B' X: C) ^( K( J& t) f) ~$ r0 y
還有,如果輸入資料時出現 2 處或以上的錯誤,例如:將 “H856249(2)” 錯入成 “H856049(A)”,我們亦無法將錯誤檢查出來。(當然,如果太容易出現 2 處的輸入錯誤,那麼我認為最佳的解決辦法,就是辭退那位輸入員,改聘另一位更可靠的人選了!)
, v( b7 K  B% r# a2 w- G. I+ Z
; a8 y  u. ?' f8 P! h2 V; v另一個秘密
0 n& v! _5 Y4 j$ |# u) Y  c留意在上面的討論中,那個位值倍數其實沒有多大的作用。事實上,如果我們不乘上任何倍數而直接將所有數位加起來,再定出一個核對數位,我們依然可以檢查出輸入資料時(1 處)的錯誤。那麼,我們為甚麼需要加入這個位值倍數呢?
) N5 F  r4 ?+ d# Y1 _, _
6 g9 C% C7 T1 m2 N原來這亦是用來防止一般人一個容易犯上的錯誤,這就是誤將其中的兩個數字的位置對調。例如:將 “H856249(2)” 錯誤地變成 “H856294(2)”。
1 j$ F- I5 x8 M* Z# k9 N# T
8 @. i7 x/ c8 U! f我們再假設正確身份證號碼的核對值為 A,第 k 位的數字為 a,第 k + n 位的數字為 b(a ¹ b;n ³ 1),如果我們錯誤地將 a、b 兩個數字對調了,那麼該核對值便會變成
1 @( r& I2 l; k( u5 ^% @$ L# v1 p* X% @/ U; I: V! M! H
A - a ´ k - b ´ (k + n) + a ´ (k + n) + b ´ k = A + (a - b) ´ n ' X4 N% I7 ^. Q

) k/ b% T- H; O! A. k+ l同理,a、b 和 n 都祇會是 0 至 9 之間的數字,故此 (a - b) ´ n 這個部分,以至是整個核對值,都不能被 11 所整除,由此可以知道輸入的資料有錯了。留意如果沒有這個位值倍數,我們就無法偵測出這種錯誤了。" B4 L$ d0 b; J% y  ^& s

9 ?4 l" U! h# R+ r& c" b總而言之,身份證號碼中的核對數位,是一個簡單但非常聰明的設計,它可以讓我們很容易地偵測出輸入資料時的兩種常犯的錯誤,從而確保資料的可靠性。在整個過程中,亦請大家細心欣賞 11 這個數字的功用。由於 11 是一個質數(而且剛好大於 10),任何兩個小於它的數字相乘,都不能被它所整除,所以才能夠在上述運算中,找到輸入時的錯誤。如果換了一個合成數,情況就不同了。例如:12,我們知道 4 和 6 都小於 12,但 4 ´ 6 的結果,卻能被 12 所整除,因此 12 不可以用來做核對過程中的除數。
% T* e+ o1 R! a  ?+ k0 A1 R9 U) {! O2 e" ?' z
最後,個人認為,既然核對數字已經成為身份證號碼中一個不可或缺的一部分,故此我們其實亦不必將它特別地指明,以一對括號將它括起來。更何況,將它括起來後,更會引起一些不知情的人胡亂猜測,實在無謂。故此,我提議政府在改發新的身份證明文件的同時,將這一對括號刪去。這不是更好的嗎?
作者: mingP    時間: 2005-7-2 10:29 PM

malaysia 1 how???=.='''
作者: 1986    時間: 2005-7-2 10:45 PM

我聽過p=新移民的說法
作者: gaye    時間: 2005-7-2 11:12 PM

這是真的
& k% B0 E& U7 q! _" F, h+ r  X# ]+ \Form 5 電腦堂書本有講, 個個位叫 Check Digit
作者: 馬仔~~    時間: 2005-7-2 11:28 PM

好似好難明....
作者: andymaldini    時間: 2005-7-2 11:43 PM

有冇可以提供頭頭d英文有冇意思
- U  \  N5 z) w% \" J% I5 @1 a1 fP,H,V 好似係新移民3 b6 B" N5 W$ c3 p
R. XG 好似係攞WORK PERMIT6 J+ x8 Z9 A4 u
K,G,Z 多數香港出世,住左香港好多年
作者: 冷    時間: 2005-7-3 10:17 AM

我地電腦都有個功課係要我地寫計身分證括號數既程式。: r& v% t4 Q% M1 f7 p. s/ w; {0 q
用pascal寫。
作者: sysykiller01    時間: 2005-7-3 06:12 PM

我地中三電腦都有教




歡迎光臨 娛樂滿紛 26FUN (http://26fun.com/bbs/) Powered by Discuz! 7.0.0