- 帖子
- 4305
- 精華
- 3
- 威望
- 1089
- 魅力
- 363
- 讚好
- 0
- 性別
- 男
|
1#
發表於 2005-7-2 10:07 PM
| 只看該作者
[轉]身份證號碼的秘密
係香港,每一個居民都會獲發一張身份證,證上的號碼一共分為 3 個部分:第一個部分是由 1 個或 2 個英文字母所組成,第二部分是 6 個數目字,第三部分有 1 對括號,中間是 1 個數目字或者是英文字母 “A”。例如:“H856249(2)” 就是一個通常見到的身份證號碼了。: S! `# q- V9 v; v' g- o, K6 N8 w y
4 T) Y# \+ S+ l0 T, x& Y3 p相信年滿 30 歲的居民都會記得,大約在 20 年前,身份證號碼原本是沒有那個括號部分的,祇是某一年,政府更換了一張「電腦化」的身份證之後,才加上這個部分的。記得當年民間就流傳了很多傳聞,猜測那個括號中的數字,倒底有甚麼意義。(我亦曾經聽過一些傳說,十分可笑,但現在不一一細表了。)不過,自從有人在一些介紹趣味數學的刊物、網頁,又或者是一些電腦雜誌、教科書中解釋了這個括號中的數字是怎樣計算出來之後,這些傳聞就漸漸消失了。
. ^4 X: e9 C/ b0 E& \2 o* }# V; x( j; f; l6 n+ S
" V+ v3 A* {- C1 k原來,這個數字是用以下方法計算出來的:. n( R" @* f( S/ D5 e' [0 f- n% l0 {
首先,我們將身份證號碼中第一部分的英文字母,按字母的次序轉換成一個數字。例如:“A” 就轉成 “1”,“B” 就轉成 “2”,其餘的如此類推。然後將身份證號碼中的每一個數字(包括由字母轉換成的數字),由左至右,分別乘以 8、7、6、5、4、3、2 等數值,並將結果加起來。(如果身份證號碼有 2 個英文字母,則第一個字母應該乘以 9,其他數字則同上。)* b9 s. z# Y0 G2 W* |) E/ ~
8 H; D% E2 \4 g6 [
例如:我在上面提過的身份證號碼,如果不理括號裏面的數字,應該是 “H856249”。先將 “H” 轉換成 8,然後由左至右乘以上述的倍數並求和,得
p7 M1 H1 ]: P: o2 F; D) q. X& ?9 I: o+ O1 ^
8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 = 218
+ g5 y T4 c; F. o+ d/ V, u8 a- e5 L% Z
5 h2 k* d3 \6 ~! ?跟著就按以下的步驟計算出括號中的數字:先將上述的總和除以 11,如果整除,那麼括號內的數字就等於 0;如果有餘數,那麼就將 11 減該餘數,所得的差就是括號內的數字了。萬一那個差等於 10,就將括號內的數字定為 “A”。
& b5 b2 d! H0 i% ~* K5 b. ]& A7 ^5 V( u! Q5 d/ @1 q" B
例如:在上面的例子中,我們將 218 除以 11,得餘數 9,所以括號中的數字就等於 11 - 9 = 2,整個身份證號碼就變成 “H856249(2)” 了。% y1 l9 D1 p" y- W/ q7 a% Q
# u9 V' Y* X p3 r又如果身份證號碼是 “H856049”,那麼總和將會是 210,餘數是 1,差是 10,所以括號中的數字就應該是 “A” 了。/ ^1 t4 W% s, r, \0 m: B4 s' W
+ I; B6 o+ i1 L" N# W$ O6 l3 |$ X原來身份證中的括號數字,就是這樣計算出來的!不過,大家有沒有想過,為甚麼我們要在原有的身份證號碼後面,加多 1 個數字呢?將身份證號碼裏的數字兜兜轉轉地計算一番,到底有甚麼意義呢?" Y X* z9 a+ u, V* y2 X% S$ B
6 }1 ]* ~$ I! S- N- A; t" Y9 C
我曾經讀過一些文章,解釋使用括號數字的原因,是為了防止非法入境者偽造身份證!文章作者表示:因為偽造身份證的歹徒並不知道身份證號碼的秘密,當警察在街上截查身份證時,可以通過以上的計算,分辨出身份證的真偽!
7 P& U8 q& D; @4 s- n: F6 R. E0 L* o0 R( q/ w3 n
不消說,相信大家都會覺得以上的解釋荒謬之極!第一、既然我可以知道身份證號碼的計算方法,偽造身份證的人又怎可能不知?第二、相信大多數人在計算上述身份證號碼的總和與及餘數時,都會用計算機來輔助計算,我很懷疑在街上巡邏的執法人員,他們是否每一位都有如此強的心算能力,能夠即時進行上述的運算?故此,身份證號碼中的括號數字是用來仿偽的解釋,似乎並不合理。
% y6 ~. ]9 R2 Q% ~0 J9 N
2 @: a# }) ^- g# v, w那麼,這個數字又有甚麼用處呢?8 ]3 L" R: ^: s
; x& Y) P# s6 Y& O) L
大家知道,不同的人會有一個不同的身份證號碼,所以身份證號碼是一個用來識別巿民的最簡單方法。我們在日常生活之中,有無數的地方,都需要到這個號碼。正因為它簡單,亦正因為它重要,我們不應該在紀錄或抄寫的過程之中,將身份證號碼搞錯,否則可能會帶來非常嚴重的後果。2 S6 J. \- W8 J. [
* G, c& ~4 O& p% l2 t& l但在以前,當我們印發身份證的時候,所有號碼都是緊貼在一起的,例如:“H856249” 這號碼之前的 “H856248” 和之後的 “H856250” 都屬於另一個人。萬一我們誤將 “H856249” 錯寫為 “H856248”,那麼就會有麻煩了!但是,這祇是 1 個數字之差,我們亦不容易察覺到這個錯誤。
; v: H" b5 `! x( h9 _
: k. _7 u) S. H為了解決以上的問題,我們引入了一個括號數字,術語上,我們稱它為「核對數位」(check digit)。引入這個核對數位最簡單的目的,就是將原本緊逼在一起的號碼分開,因為我們祇會從 0 至 9 或 A 中選擇其中一個數字作為這個核對數位,所以每個身份證號碼之間,都會有 11 個數字的「距離」。
& q; p- z) J9 h' T. x3 O
L, |5 o0 y; T' t, D4 w( o第二、由於電腦的發明,當我們將資料輸入電腦時,我們同時可以指示電腦檢查那身份證的號碼是否正確,從而防止輸入資料時的人為錯誤。事實上,檢查身份證號碼是否正確的方法,比計算核對數位的方法直接得多,方法如下:4 W* }, _" i/ H7 L- m4 v
- S, B/ G; f, Y0 M* a- c/ v
首先,我們依舊將身份證號碼中第一部分的英文字母轉換成數字。然後將身份證號碼中的每一個數字(包括核對數位),由左至右,分別乘以每個位的「位值倍數」,即 8、7、6、5、4、3、2 和 1(即將核對數位乘以 1),並將結果加起來,以後稱這個值為「核對值」。最後,將這個核對值除以 11。留意核對數位是將 11 減去前面 7 個位乘以其位值倍數之和除以 11 後的餘數,故此,連同核對數位計算出來的核對值,必定能夠被 11 整除。因此,如果我們發覺核對值不能被 11 整除,那麼輸入的身份證號碼就一定有錯了。(注意:電腦的運算速度非常之高,將身份證號碼輸入電腦後,一按鍵,它就可以完成有關的驗算,相信連使用電腦的人,亦不會察覺到電腦其實已做了很多次的計算!)
u7 y) Y* e4 x& ~+ P* ]' d! Q; d0 y R( r: [
例如:“H856249(2)” 是一個正確的號碼,按上述方法計算出的核對值等於
0 ^- c/ e2 N* l) \3 c0 Y8 ]9 E7 d" C
8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 + 2 ´ 1 = 2203 x$ m, T, W9 L7 T: N+ X) i3 @
$ H2 q$ T( |4 h2 D" H( _, J明顯這個數能夠被11所整除。假如在輸入資料時,將其中 1 個位的數字或字母搞錯,例如:變成 “K856249(2)”、“H856049(2)” 或 “H856249(A)”,那麼計算出來的核對值就會分別變成 244、212 和 228。由於這些數值不能被 11 整除,因此我們便知道這些號碼有錯了。
+ t0 A, s! {. k, i& Z' a
' o% z, ^+ ^" I$ y' \- T事實上,如果一個身份證號碼的正確核對值為 A,而在輸入資料時,(由右邊數起的)第 k 個位原本是 a,但現在錯入成 b(a ¹ b),那麼該核對值將會變成" d, K5 ]% s4 Y7 P, Q* U. ?* y
. I& Z& g0 Q! ?& s$ lA - a ´ k + b ´ k = A + (b - a) ´ k
: h0 ~7 x" ?7 h3 {
% a8 a& Z8 d G/ t$ w留意在這裏,除非錯誤發生在第一個位的英文字母上,否則 (b - a) 的絕對值和k都祇會是 1 至 10 之間的數字,不會大於 11,故此 (b - a) ´ k 這個部分,不可能被 11 整除。但因為 A 本身可以被 11 整除,所以整個核對值 A + (b - a) ´ k,便不能被 11 所整除了。由此可以知道輸入的資料有錯。
! j" [) Z5 K8 J! R4 b/ t2 j6 T
% m' v8 g& M/ ?- n當然,應用核對值的方法有一個死穴,就是頭一個字母如果錯入了一個和原本字母相隔 11 個位的字母,例如:將 “H856249(2)” 錯入成 “S856249(2)”(其核對值為 308,可以被 11 整除),那麼電腦亦無法知道到輸入的資料有錯了。不過,相信發生如此錯誤的機會極之小,所以這個方法亦相當可靠。- L# ^7 G' F$ \; a& `
! M: Z# E2 P& ^2 Y1 A還有,如果輸入資料時出現 2 處或以上的錯誤,例如:將 “H856249(2)” 錯入成 “H856049(A)”,我們亦無法將錯誤檢查出來。(當然,如果太容易出現 2 處的輸入錯誤,那麼我認為最佳的解決辦法,就是辭退那位輸入員,改聘另一位更可靠的人選了!)
5 _1 S4 Z! p1 b
$ l9 G9 m; R' N: m$ K; L另一個秘密
2 a9 F* C( y8 M留意在上面的討論中,那個位值倍數其實沒有多大的作用。事實上,如果我們不乘上任何倍數而直接將所有數位加起來,再定出一個核對數位,我們依然可以檢查出輸入資料時(1 處)的錯誤。那麼,我們為甚麼需要加入這個位值倍數呢?& q: G$ A- P3 x5 z
0 _# A; @$ j8 _& I1 S+ a }# f* C原來這亦是用來防止一般人一個容易犯上的錯誤,這就是誤將其中的兩個數字的位置對調。例如:將 “H856249(2)” 錯誤地變成 “H856294(2)”。. g: `) j$ Y! T' s$ R! c7 Q
3 n: {6 C2 A/ E6 l% |. }
我們再假設正確身份證號碼的核對值為 A,第 k 位的數字為 a,第 k + n 位的數字為 b(a ¹ b;n ³ 1),如果我們錯誤地將 a、b 兩個數字對調了,那麼該核對值便會變成
1 I0 v6 {& O- f- W! L
6 U5 D' b3 e! }& DA - a ´ k - b ´ (k + n) + a ´ (k + n) + b ´ k = A + (a - b) ´ n . X( R% J4 f6 w3 { m6 D
0 N- b3 t; y( k8 [$ b5 q, B& F. ?' D+ Y
同理,a、b 和 n 都祇會是 0 至 9 之間的數字,故此 (a - b) ´ n 這個部分,以至是整個核對值,都不能被 11 所整除,由此可以知道輸入的資料有錯了。留意如果沒有這個位值倍數,我們就無法偵測出這種錯誤了。
0 _7 l4 D2 G$ V' r) |, h5 y( ]7 d9 z+ J" Z) {7 m W
總而言之,身份證號碼中的核對數位,是一個簡單但非常聰明的設計,它可以讓我們很容易地偵測出輸入資料時的兩種常犯的錯誤,從而確保資料的可靠性。在整個過程中,亦請大家細心欣賞 11 這個數字的功用。由於 11 是一個質數(而且剛好大於 10),任何兩個小於它的數字相乘,都不能被它所整除,所以才能夠在上述運算中,找到輸入時的錯誤。如果換了一個合成數,情況就不同了。例如:12,我們知道 4 和 6 都小於 12,但 4 ´ 6 的結果,卻能被 12 所整除,因此 12 不可以用來做核對過程中的除數。8 U: f. y4 n% P- n4 n5 O/ a, \9 |
4 D6 ?4 {: ^2 D8 n8 D4 d4 I最後,個人認為,既然核對數字已經成為身份證號碼中一個不可或缺的一部分,故此我們其實亦不必將它特別地指明,以一對括號將它括起來。更何況,將它括起來後,更會引起一些不知情的人胡亂猜測,實在無謂。故此,我提議政府在改發新的身份證明文件的同時,將這一對括號刪去。這不是更好的嗎? |
|