    
- 帖子
- 4305
- 精華
- 3
- 威望
- 1089
- 魅力
- 363
- 讚好
- 0
- 性別
- 男
|
1#
發表於 2005-7-2 10:07 PM
| 只看該作者
[轉]身份證號碼的秘密
係香港,每一個居民都會獲發一張身份證,證上的號碼一共分為 3 個部分:第一個部分是由 1 個或 2 個英文字母所組成,第二部分是 6 個數目字,第三部分有 1 對括號,中間是 1 個數目字或者是英文字母 “A”。例如:“H856249(2)” 就是一個通常見到的身份證號碼了。
, v* A4 A6 V6 k! U& u' W. j6 q
9 z: Q" X( B$ V; O. Y9 ^# I, T相信年滿 30 歲的居民都會記得,大約在 20 年前,身份證號碼原本是沒有那個括號部分的,祇是某一年,政府更換了一張「電腦化」的身份證之後,才加上這個部分的。記得當年民間就流傳了很多傳聞,猜測那個括號中的數字,倒底有甚麼意義。(我亦曾經聽過一些傳說,十分可笑,但現在不一一細表了。)不過,自從有人在一些介紹趣味數學的刊物、網頁,又或者是一些電腦雜誌、教科書中解釋了這個括號中的數字是怎樣計算出來之後,這些傳聞就漸漸消失了。+ \, k+ ~4 Q( }+ u# K A3 u/ X0 o
# m0 f+ d0 s. E! x( I) m
6 ~$ A9 x2 c0 e% e7 N) s( B
原來,這個數字是用以下方法計算出來的:' ~8 V, `& M* ^ f8 @0 t
首先,我們將身份證號碼中第一部分的英文字母,按字母的次序轉換成一個數字。例如:“A” 就轉成 “1”,“B” 就轉成 “2”,其餘的如此類推。然後將身份證號碼中的每一個數字(包括由字母轉換成的數字),由左至右,分別乘以 8、7、6、5、4、3、2 等數值,並將結果加起來。(如果身份證號碼有 2 個英文字母,則第一個字母應該乘以 9,其他數字則同上。)* U, s$ Z/ e/ g2 W7 }2 V& f- ?. b t2 b' o
8 G& r: Z5 A( `) S, }& G例如:我在上面提過的身份證號碼,如果不理括號裏面的數字,應該是 “H856249”。先將 “H” 轉換成 8,然後由左至右乘以上述的倍數並求和,得
" w9 K2 ^( m9 A$ r/ \7 I2 F! h) u
6 z! M, C6 ?- I1 M" I5 i- A8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 = 218
* E: z* t2 J0 ^% i* R2 z
2 c+ m4 j/ d- `7 n( V9 q- _跟著就按以下的步驟計算出括號中的數字:先將上述的總和除以 11,如果整除,那麼括號內的數字就等於 0;如果有餘數,那麼就將 11 減該餘數,所得的差就是括號內的數字了。萬一那個差等於 10,就將括號內的數字定為 “A”。: Y- K# c! \8 F
# G9 j! Z6 }- a* v例如:在上面的例子中,我們將 218 除以 11,得餘數 9,所以括號中的數字就等於 11 - 9 = 2,整個身份證號碼就變成 “H856249(2)” 了。8 {: q4 Y+ q) C8 t! N- N
% m% M6 Z; G/ W( X又如果身份證號碼是 “H856049”,那麼總和將會是 210,餘數是 1,差是 10,所以括號中的數字就應該是 “A” 了。' ~. [/ e) @: h$ o6 E2 x, O
/ ^$ Z4 Q f4 K+ D5 |2 J( `' u5 \, t& \原來身份證中的括號數字,就是這樣計算出來的!不過,大家有沒有想過,為甚麼我們要在原有的身份證號碼後面,加多 1 個數字呢?將身份證號碼裏的數字兜兜轉轉地計算一番,到底有甚麼意義呢?
9 p; D0 Z# Q' r1 v" S
9 L, X9 }& M6 C, p+ |我曾經讀過一些文章,解釋使用括號數字的原因,是為了防止非法入境者偽造身份證!文章作者表示:因為偽造身份證的歹徒並不知道身份證號碼的秘密,當警察在街上截查身份證時,可以通過以上的計算,分辨出身份證的真偽!
h, ?& _0 B# W4 V: b4 ^& o- L8 \: b- W7 K! M! T
不消說,相信大家都會覺得以上的解釋荒謬之極!第一、既然我可以知道身份證號碼的計算方法,偽造身份證的人又怎可能不知?第二、相信大多數人在計算上述身份證號碼的總和與及餘數時,都會用計算機來輔助計算,我很懷疑在街上巡邏的執法人員,他們是否每一位都有如此強的心算能力,能夠即時進行上述的運算?故此,身份證號碼中的括號數字是用來仿偽的解釋,似乎並不合理。
4 V' g8 L) E7 [% z; L# ~( L
* }$ l1 Z: t2 |( A) i1 [7 e, A那麼,這個數字又有甚麼用處呢?. F" n# m: `% Q; a+ \4 ]: Y g
/ X8 d. ^) A J. G+ ]: D
大家知道,不同的人會有一個不同的身份證號碼,所以身份證號碼是一個用來識別巿民的最簡單方法。我們在日常生活之中,有無數的地方,都需要到這個號碼。正因為它簡單,亦正因為它重要,我們不應該在紀錄或抄寫的過程之中,將身份證號碼搞錯,否則可能會帶來非常嚴重的後果。
2 T" S" b u& U, \: H+ K
) F) k( m( N# V2 U但在以前,當我們印發身份證的時候,所有號碼都是緊貼在一起的,例如:“H856249” 這號碼之前的 “H856248” 和之後的 “H856250” 都屬於另一個人。萬一我們誤將 “H856249” 錯寫為 “H856248”,那麼就會有麻煩了!但是,這祇是 1 個數字之差,我們亦不容易察覺到這個錯誤。
7 O" q- b) y2 F* \7 y% ], X( {" R- ?2 B9 `( V
為了解決以上的問題,我們引入了一個括號數字,術語上,我們稱它為「核對數位」(check digit)。引入這個核對數位最簡單的目的,就是將原本緊逼在一起的號碼分開,因為我們祇會從 0 至 9 或 A 中選擇其中一個數字作為這個核對數位,所以每個身份證號碼之間,都會有 11 個數字的「距離」。
3 v% s! Y+ R0 v' p% q- ?) ^6 M
! P* s# Y& P/ r* R6 j; n第二、由於電腦的發明,當我們將資料輸入電腦時,我們同時可以指示電腦檢查那身份證的號碼是否正確,從而防止輸入資料時的人為錯誤。事實上,檢查身份證號碼是否正確的方法,比計算核對數位的方法直接得多,方法如下:) u7 k* L. ]& g; u6 M
% A1 }: j$ }, Z# _首先,我們依舊將身份證號碼中第一部分的英文字母轉換成數字。然後將身份證號碼中的每一個數字(包括核對數位),由左至右,分別乘以每個位的「位值倍數」,即 8、7、6、5、4、3、2 和 1(即將核對數位乘以 1),並將結果加起來,以後稱這個值為「核對值」。最後,將這個核對值除以 11。留意核對數位是將 11 減去前面 7 個位乘以其位值倍數之和除以 11 後的餘數,故此,連同核對數位計算出來的核對值,必定能夠被 11 整除。因此,如果我們發覺核對值不能被 11 整除,那麼輸入的身份證號碼就一定有錯了。(注意:電腦的運算速度非常之高,將身份證號碼輸入電腦後,一按鍵,它就可以完成有關的驗算,相信連使用電腦的人,亦不會察覺到電腦其實已做了很多次的計算!)1 I5 G/ y; O1 H: M$ s
/ t6 g! W5 ?( b( i例如:“H856249(2)” 是一個正確的號碼,按上述方法計算出的核對值等於* x5 J: k4 y8 u$ d- M
) r* Z! E2 L) M& w8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 + 2 ´ 1 = 220
" O L1 Q( ~! o, n+ v% `4 s5 s$ x. ]2 E9 w0 u7 T% [! h& [# W& I
明顯這個數能夠被11所整除。假如在輸入資料時,將其中 1 個位的數字或字母搞錯,例如:變成 “K856249(2)”、“H856049(2)” 或 “H856249(A)”,那麼計算出來的核對值就會分別變成 244、212 和 228。由於這些數值不能被 11 整除,因此我們便知道這些號碼有錯了。
7 p ~ v) e' f: x1 I+ d& Z" [7 i# K9 w2 H$ n) p
事實上,如果一個身份證號碼的正確核對值為 A,而在輸入資料時,(由右邊數起的)第 k 個位原本是 a,但現在錯入成 b(a ¹ b),那麼該核對值將會變成2 y- }% J# t5 `1 x* K6 l. D+ n2 I; m2 T7 w
0 z0 i8 g7 I3 yA - a ´ k + b ´ k = A + (b - a) ´ k % P/ B6 u* p% G+ N* }
( x; s. {4 {" Z( v留意在這裏,除非錯誤發生在第一個位的英文字母上,否則 (b - a) 的絕對值和k都祇會是 1 至 10 之間的數字,不會大於 11,故此 (b - a) ´ k 這個部分,不可能被 11 整除。但因為 A 本身可以被 11 整除,所以整個核對值 A + (b - a) ´ k,便不能被 11 所整除了。由此可以知道輸入的資料有錯。
# U7 w y3 X/ H( m
+ ^6 \' P6 V. D5 r; ^當然,應用核對值的方法有一個死穴,就是頭一個字母如果錯入了一個和原本字母相隔 11 個位的字母,例如:將 “H856249(2)” 錯入成 “S856249(2)”(其核對值為 308,可以被 11 整除),那麼電腦亦無法知道到輸入的資料有錯了。不過,相信發生如此錯誤的機會極之小,所以這個方法亦相當可靠。
: }# V0 V3 s* g- _
* U' N! C; W" s Z$ s, ^1 W還有,如果輸入資料時出現 2 處或以上的錯誤,例如:將 “H856249(2)” 錯入成 “H856049(A)”,我們亦無法將錯誤檢查出來。(當然,如果太容易出現 2 處的輸入錯誤,那麼我認為最佳的解決辦法,就是辭退那位輸入員,改聘另一位更可靠的人選了!)
! O( ~1 I+ R0 G4 B$ i2 J; |, y
; \- j( |2 s7 ~另一個秘密 0 `8 D' b, c) y1 q
留意在上面的討論中,那個位值倍數其實沒有多大的作用。事實上,如果我們不乘上任何倍數而直接將所有數位加起來,再定出一個核對數位,我們依然可以檢查出輸入資料時(1 處)的錯誤。那麼,我們為甚麼需要加入這個位值倍數呢?! O! Z6 q$ m9 O& P! e- p
* }8 e# i4 e8 g6 T0 {6 \5 _
原來這亦是用來防止一般人一個容易犯上的錯誤,這就是誤將其中的兩個數字的位置對調。例如:將 “H856249(2)” 錯誤地變成 “H856294(2)”。) x! p: N2 |0 V9 V1 z$ r- u( ~* s
* a( E. S+ l% f; n0 k$ Y我們再假設正確身份證號碼的核對值為 A,第 k 位的數字為 a,第 k + n 位的數字為 b(a ¹ b;n ³ 1),如果我們錯誤地將 a、b 兩個數字對調了,那麼該核對值便會變成
) m3 r/ A9 Y' M
/ y8 O k' O' E7 d% nA - a ´ k - b ´ (k + n) + a ´ (k + n) + b ´ k = A + (a - b) ´ n
6 ~7 {4 Q5 _) \+ E& ^3 K) Z% ?: D& R
同理,a、b 和 n 都祇會是 0 至 9 之間的數字,故此 (a - b) ´ n 這個部分,以至是整個核對值,都不能被 11 所整除,由此可以知道輸入的資料有錯了。留意如果沒有這個位值倍數,我們就無法偵測出這種錯誤了。4 _# H+ b) R% m+ S- q% K* h
( }7 _: C8 S3 w+ d) N總而言之,身份證號碼中的核對數位,是一個簡單但非常聰明的設計,它可以讓我們很容易地偵測出輸入資料時的兩種常犯的錯誤,從而確保資料的可靠性。在整個過程中,亦請大家細心欣賞 11 這個數字的功用。由於 11 是一個質數(而且剛好大於 10),任何兩個小於它的數字相乘,都不能被它所整除,所以才能夠在上述運算中,找到輸入時的錯誤。如果換了一個合成數,情況就不同了。例如:12,我們知道 4 和 6 都小於 12,但 4 ´ 6 的結果,卻能被 12 所整除,因此 12 不可以用來做核對過程中的除數。
. `! m4 j- v+ F1 w' P1 f" n& D$ ~; ^- C/ Q; x- x: M: x. J
最後,個人認為,既然核對數字已經成為身份證號碼中一個不可或缺的一部分,故此我們其實亦不必將它特別地指明,以一對括號將它括起來。更何況,將它括起來後,更會引起一些不知情的人胡亂猜測,實在無謂。故此,我提議政府在改發新的身份證明文件的同時,將這一對括號刪去。這不是更好的嗎? |
|