    
- 帖子
- 4305
- 精華
- 3
- 威望
- 1089
- 魅力
- 363
- 讚好
- 0
- 性別
- 男
|
1#
發表於 2005-7-2 10:07 PM
| 只看該作者
[轉]身份證號碼的秘密
係香港,每一個居民都會獲發一張身份證,證上的號碼一共分為 3 個部分:第一個部分是由 1 個或 2 個英文字母所組成,第二部分是 6 個數目字,第三部分有 1 對括號,中間是 1 個數目字或者是英文字母 “A”。例如:“H856249(2)” 就是一個通常見到的身份證號碼了。! l8 Y3 H( O; o* n2 o) N9 R
* E2 N- c7 v `相信年滿 30 歲的居民都會記得,大約在 20 年前,身份證號碼原本是沒有那個括號部分的,祇是某一年,政府更換了一張「電腦化」的身份證之後,才加上這個部分的。記得當年民間就流傳了很多傳聞,猜測那個括號中的數字,倒底有甚麼意義。(我亦曾經聽過一些傳說,十分可笑,但現在不一一細表了。)不過,自從有人在一些介紹趣味數學的刊物、網頁,又或者是一些電腦雜誌、教科書中解釋了這個括號中的數字是怎樣計算出來之後,這些傳聞就漸漸消失了。5 J% m+ I# f* D- P/ W' {
5 V2 n Q8 f" l
5 D8 f0 f X+ y- _7 {原來,這個數字是用以下方法計算出來的:: k: u( W) m0 B" B6 j5 E$ h, ]
首先,我們將身份證號碼中第一部分的英文字母,按字母的次序轉換成一個數字。例如:“A” 就轉成 “1”,“B” 就轉成 “2”,其餘的如此類推。然後將身份證號碼中的每一個數字(包括由字母轉換成的數字),由左至右,分別乘以 8、7、6、5、4、3、2 等數值,並將結果加起來。(如果身份證號碼有 2 個英文字母,則第一個字母應該乘以 9,其他數字則同上。)4 V# y. [3 d4 L2 Y7 A. i$ e: E
- K! _0 f, u5 K- U例如:我在上面提過的身份證號碼,如果不理括號裏面的數字,應該是 “H856249”。先將 “H” 轉換成 8,然後由左至右乘以上述的倍數並求和,得, R0 s7 v; s1 i2 X( U1 D
1 |- j0 U" o$ I9 M$ Y; u, L! ?8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 = 218
2 ^0 X" ?6 v' f# W" o* v7 c& J* j/ a0 n6 h( r
跟著就按以下的步驟計算出括號中的數字:先將上述的總和除以 11,如果整除,那麼括號內的數字就等於 0;如果有餘數,那麼就將 11 減該餘數,所得的差就是括號內的數字了。萬一那個差等於 10,就將括號內的數字定為 “A”。
$ O$ f4 P6 U/ }# T f) b6 `; e% m
" H0 |/ Y5 H$ c6 o例如:在上面的例子中,我們將 218 除以 11,得餘數 9,所以括號中的數字就等於 11 - 9 = 2,整個身份證號碼就變成 “H856249(2)” 了。4 G: }! S& ]$ Z/ z% u6 I
: D" f+ B1 |2 [' }: u b又如果身份證號碼是 “H856049”,那麼總和將會是 210,餘數是 1,差是 10,所以括號中的數字就應該是 “A” 了。
$ @& S2 h' K; Y* f: p0 q9 M% d2 Z V/ _/ P
原來身份證中的括號數字,就是這樣計算出來的!不過,大家有沒有想過,為甚麼我們要在原有的身份證號碼後面,加多 1 個數字呢?將身份證號碼裏的數字兜兜轉轉地計算一番,到底有甚麼意義呢?$ X) F. P q5 R( O1 Z% W
& D& x! a; F4 U
我曾經讀過一些文章,解釋使用括號數字的原因,是為了防止非法入境者偽造身份證!文章作者表示:因為偽造身份證的歹徒並不知道身份證號碼的秘密,當警察在街上截查身份證時,可以通過以上的計算,分辨出身份證的真偽!' [' r8 M! q! [. ~/ j
! C* L) `8 @4 C不消說,相信大家都會覺得以上的解釋荒謬之極!第一、既然我可以知道身份證號碼的計算方法,偽造身份證的人又怎可能不知?第二、相信大多數人在計算上述身份證號碼的總和與及餘數時,都會用計算機來輔助計算,我很懷疑在街上巡邏的執法人員,他們是否每一位都有如此強的心算能力,能夠即時進行上述的運算?故此,身份證號碼中的括號數字是用來仿偽的解釋,似乎並不合理。3 |% ]& g3 B4 p7 n+ S' U. G
. Q) w# h* t2 F
那麼,這個數字又有甚麼用處呢?
& s* P8 ]3 K& d+ }0 a0 o( p8 q* T6 @/ O' I$ |' Z& s0 r% T& j a
大家知道,不同的人會有一個不同的身份證號碼,所以身份證號碼是一個用來識別巿民的最簡單方法。我們在日常生活之中,有無數的地方,都需要到這個號碼。正因為它簡單,亦正因為它重要,我們不應該在紀錄或抄寫的過程之中,將身份證號碼搞錯,否則可能會帶來非常嚴重的後果。
- b6 e2 W- {) l% N
7 r! {! y7 I3 B; E8 e但在以前,當我們印發身份證的時候,所有號碼都是緊貼在一起的,例如:“H856249” 這號碼之前的 “H856248” 和之後的 “H856250” 都屬於另一個人。萬一我們誤將 “H856249” 錯寫為 “H856248”,那麼就會有麻煩了!但是,這祇是 1 個數字之差,我們亦不容易察覺到這個錯誤。
. z9 `, c7 R. t) s# E7 B+ a
* f; E3 X7 I! O) y, o' U為了解決以上的問題,我們引入了一個括號數字,術語上,我們稱它為「核對數位」(check digit)。引入這個核對數位最簡單的目的,就是將原本緊逼在一起的號碼分開,因為我們祇會從 0 至 9 或 A 中選擇其中一個數字作為這個核對數位,所以每個身份證號碼之間,都會有 11 個數字的「距離」。
5 \& m: J2 J5 I% \; h+ i: g4 p' b! b- z3 {& ~- ], ~6 c
第二、由於電腦的發明,當我們將資料輸入電腦時,我們同時可以指示電腦檢查那身份證的號碼是否正確,從而防止輸入資料時的人為錯誤。事實上,檢查身份證號碼是否正確的方法,比計算核對數位的方法直接得多,方法如下:
9 K4 B. F$ v f$ {3 p; s# {" h" V+ ]. x% T
首先,我們依舊將身份證號碼中第一部分的英文字母轉換成數字。然後將身份證號碼中的每一個數字(包括核對數位),由左至右,分別乘以每個位的「位值倍數」,即 8、7、6、5、4、3、2 和 1(即將核對數位乘以 1),並將結果加起來,以後稱這個值為「核對值」。最後,將這個核對值除以 11。留意核對數位是將 11 減去前面 7 個位乘以其位值倍數之和除以 11 後的餘數,故此,連同核對數位計算出來的核對值,必定能夠被 11 整除。因此,如果我們發覺核對值不能被 11 整除,那麼輸入的身份證號碼就一定有錯了。(注意:電腦的運算速度非常之高,將身份證號碼輸入電腦後,一按鍵,它就可以完成有關的驗算,相信連使用電腦的人,亦不會察覺到電腦其實已做了很多次的計算!)$ r; @! c. Z% Q$ [2 K( T# H
# l. ]/ B3 |: I- d+ c
例如:“H856249(2)” 是一個正確的號碼,按上述方法計算出的核對值等於& O1 d- R0 F% U
9 w" i- j# k$ O/ {8 w C- \3 O
8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 + 2 ´ 1 = 2200 ?* }$ E$ \3 E3 q# m
2 m- c- v5 K s% ~, f% ]明顯這個數能夠被11所整除。假如在輸入資料時,將其中 1 個位的數字或字母搞錯,例如:變成 “K856249(2)”、“H856049(2)” 或 “H856249(A)”,那麼計算出來的核對值就會分別變成 244、212 和 228。由於這些數值不能被 11 整除,因此我們便知道這些號碼有錯了。. `/ L) O2 i" J+ @( Z
9 K7 S* j5 X+ P. S# `事實上,如果一個身份證號碼的正確核對值為 A,而在輸入資料時,(由右邊數起的)第 k 個位原本是 a,但現在錯入成 b(a ¹ b),那麼該核對值將會變成
6 s! \' H5 L/ Q& r5 m& {. S, P: b# T, {0 z
A - a ´ k + b ´ k = A + (b - a) ´ k 4 b; _. u, G2 m( x. Z
" r0 v/ w" r2 D6 C5 K; X留意在這裏,除非錯誤發生在第一個位的英文字母上,否則 (b - a) 的絕對值和k都祇會是 1 至 10 之間的數字,不會大於 11,故此 (b - a) ´ k 這個部分,不可能被 11 整除。但因為 A 本身可以被 11 整除,所以整個核對值 A + (b - a) ´ k,便不能被 11 所整除了。由此可以知道輸入的資料有錯。
0 X* b' T# S+ a* x# ^; G1 H) b) d) N, r2 M! ^& z
當然,應用核對值的方法有一個死穴,就是頭一個字母如果錯入了一個和原本字母相隔 11 個位的字母,例如:將 “H856249(2)” 錯入成 “S856249(2)”(其核對值為 308,可以被 11 整除),那麼電腦亦無法知道到輸入的資料有錯了。不過,相信發生如此錯誤的機會極之小,所以這個方法亦相當可靠。3 ~ j8 Q) c6 V( O
# N. y5 B) ~' t& j+ H, z9 b% u還有,如果輸入資料時出現 2 處或以上的錯誤,例如:將 “H856249(2)” 錯入成 “H856049(A)”,我們亦無法將錯誤檢查出來。(當然,如果太容易出現 2 處的輸入錯誤,那麼我認為最佳的解決辦法,就是辭退那位輸入員,改聘另一位更可靠的人選了!)( F( J. P, _( p$ c7 [
( Q1 P* n* k; z5 k- A另一個秘密
M1 L& R, y) Q/ D# j: _% E& \留意在上面的討論中,那個位值倍數其實沒有多大的作用。事實上,如果我們不乘上任何倍數而直接將所有數位加起來,再定出一個核對數位,我們依然可以檢查出輸入資料時(1 處)的錯誤。那麼,我們為甚麼需要加入這個位值倍數呢?$ G: k" b! |% T
w9 [9 F0 V" q% {, E/ _+ Z
原來這亦是用來防止一般人一個容易犯上的錯誤,這就是誤將其中的兩個數字的位置對調。例如:將 “H856249(2)” 錯誤地變成 “H856294(2)”。
- G) G; R1 ?/ A6 W8 E% G# Z
P+ b H B" Z [' {2 ~: O, t我們再假設正確身份證號碼的核對值為 A,第 k 位的數字為 a,第 k + n 位的數字為 b(a ¹ b;n ³ 1),如果我們錯誤地將 a、b 兩個數字對調了,那麼該核對值便會變成
$ v9 @* X9 V2 r, g7 }/ t6 z3 S$ a. T+ C* i1 D
A - a ´ k - b ´ (k + n) + a ´ (k + n) + b ´ k = A + (a - b) ´ n
& C( w) r/ H" y8 m1 Z; Z, P8 C- @, ^! Z' k9 X5 {( E# M
同理,a、b 和 n 都祇會是 0 至 9 之間的數字,故此 (a - b) ´ n 這個部分,以至是整個核對值,都不能被 11 所整除,由此可以知道輸入的資料有錯了。留意如果沒有這個位值倍數,我們就無法偵測出這種錯誤了。
. k' T, g, o/ I: A# C1 q: L- B. D# \+ h$ w) { Q
總而言之,身份證號碼中的核對數位,是一個簡單但非常聰明的設計,它可以讓我們很容易地偵測出輸入資料時的兩種常犯的錯誤,從而確保資料的可靠性。在整個過程中,亦請大家細心欣賞 11 這個數字的功用。由於 11 是一個質數(而且剛好大於 10),任何兩個小於它的數字相乘,都不能被它所整除,所以才能夠在上述運算中,找到輸入時的錯誤。如果換了一個合成數,情況就不同了。例如:12,我們知道 4 和 6 都小於 12,但 4 ´ 6 的結果,卻能被 12 所整除,因此 12 不可以用來做核對過程中的除數。 E7 T1 R. n; N3 Y' h+ ]. |
* _& @6 R9 D3 q1 q
最後,個人認為,既然核對數字已經成為身份證號碼中一個不可或缺的一部分,故此我們其實亦不必將它特別地指明,以一對括號將它括起來。更何況,將它括起來後,更會引起一些不知情的人胡亂猜測,實在無謂。故此,我提議政府在改發新的身份證明文件的同時,將這一對括號刪去。這不是更好的嗎? |
|