- 帖子
- 5165
- 精華
- 0
- 威望
- 1100
- 魅力
- 0
- 讚好
- 0
- 性別
- 男
|
187#
發表於 2007-6-6 12:32 AM
| 只看該作者
Originally posted by BOYDWAN at 2007-6-6 00:27:
真該煨............問你你竟然話好深唔識.........咁我點答呀大佬~ The Integers (Latin, integer, literally, "untouched," whole, entire, i.e. a whole number) are the positive natural numbers (1, 2, 3, …), their negatives (−1, −2, −3, ...] and the number zero.
More formally, the integers are the only integral domain whose positive elements are well-ordered, and in which order is preserved by addition. Like the natural numbers, the integers form a countably infinite set. The set of all integers is usually denoted in mathematics by a boldface Z (or blackboard bold, , or Unicode ℤ), which stands for Zahlen (German for "numbers".[1]
The term rational integer is used in algebraic number theory to distinguish these "ordinary" integers, embedded in the field of rational numbers, from other "integers" such as the algebraic integers.
自然數 (例如 1、2、3)、負的自然數 (例如 −1、−2、−3) 與零合起來統稱為整數。和自然數一樣,整數也是一個可數的無限集合。這個集合在數學上通常表示為粗體 Z 或 ) ,意為 Zahlen(德語:「數」)。
通常,整數集合中還有一些子集有特定術語:
正整數
大於0的整數;
負整數
小於0的整數;
非正整數
0與負整數;
非負整數
0與正整數;
在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分
|
|