<<新主題 | 舊主題>>
娛樂滿紛 26FUN» 吹水版 » IQ大挑戰 » [機會率]經典IQ 數學題(大師級第五關)
返回列表 回復 發帖
整件事只是鬧劇一場, 無謂浪費時間去研究!!!
條友自恃IQ高, 係度玩野故弄玄虛, 為炫耀自己的才智, 不惜混淆是非黑白!!!
作為一個普通人, 就算你有道理, 你有能力拗得贏個d才子嗎???只會被佢帶你遊花園, 玩死為止!!! 最佳方法是讚嘆其聰明才智, 然後一笑置之!!!
簡單不一定錯, 長篇大論不代表正確, 道理不一定在天才這一邊!!!
Originally posted by ming8964 at 2007-3-16 02:39 PM:
整件事只是鬧劇一場, 無謂浪費時間去研究!!!
條友自恃IQ高, 係度玩野故弄玄虛, 為炫耀自己的才智, 不惜混淆是非黑白!!!
作為一個普通人, 就算你有道理, 你有能力拗得贏個d才子嗎???只會被佢帶你遊花園, 玩死為止!!! 最佳方法是讚嘆其聰明才智, 然後一笑置之!!!
簡單不一定錯, 長篇大論不代表正確, 道理不一定在天才這一邊!!!
說話又唔係咁講
呢度無人自恃IQ高,如果人地IQ真係高過你,咁係你問題,唔係人地問題
無人故弄玄虛,因為所有野都係一隻隻字咁係度,理解唔到當中意思就去自己進修一下
才智更加無得炫耀,難道將自己所識所了解所明白的知識講俾大家聽就係炫耀?係ge話,做老師的個個都炫耀緊啦,更何況,有才智的,點解唔可以show出黎?呢d係值得驕傲的事
是非黑白係有人仲未搞清je,並非混淆~

唔係話因為自己唔理解就一笑置之,咁ge學習態度是不對的
而且,這並不是最佳方法,如果不經過深思就放棄,相信這世上沒甚麼可以學得了
Originally posted by ronja at 2007-3-16 10:57 AM:
一見當初原以為已解決之問題,又有這麼...
一係1/3(不換),一係2/3(換)

除非一開頭觀眾不選任何一道開,否則,不會有1/2

如果觀眾開頭不選任何一道門,主持人開一道門後,就真真正正是二擇一,50%中奨

冇選門,後來就不會有換與不換的問題,兩度門是均等,50%中奨(但不適合於這題目)

開頭選門是這題目的condition(1/3),主持人開一道門後,你只得兩個選擇,換與不換,但開門並

不影響自己的門中奨機會,因此,一係1/3(不換),一係2/3(換)

至於,你的問題一是毫無意義,這post一直都在問題二

Please clearly'read the question'b4 you comment on it.
Originally posted by guswan at 2007-3-16 08:20 AM:
買六合彩,一是中,一是唔中.中獎機會1/2.
今次唔中,下次一定中.

仍在沉思中............
中獎機會1/2真的代表今次唔中,下次一定中嗎?
不論今次中或唔中,下次中獎機會也是1/2
更何況買六合彩中獎機會不是1/2吧,你以為自己是黃大仙
Originally posted by ming8964 at 2007-3-16 02:39 PM:
整件事只是鬧劇一場, 無謂浪費時間去...
Your additude is kinda.. wrong.... ppl investigate on trivial thing because they want to, but not to show off, even if they want to show off, their discoverary would benefit a lot of ppl.

Why dont you bith on newton since he wonder why the apple would fall down but not goes up.
Originally posted by PG-13 at 2007-3-16 01:02 AM:


Stimulator... [url]http://www.u...
個Stimulator幾易用,睇下我的結果
                games           won                   lost
switched       100         64 (64,00 %)    36 (36,00 %)
not switched   50         14 (28,00 %)     36 (72,00 %)
total            150         78 (52,00 %)     72 (48,00 %)
實驗概率與或然率差別不大

至於那些認為勝出遊戲與在遊戲落敗機會相等的人有一個假設,就是換與不換的比率是1:1,

但問題中,觀眾有權選擇換與不換,而且根據數學,觀眾可以計出換後勝出率較不換高(2/3),

(計算方法有很多,而且已有不少人已經正確計出,本人不再詳述),正因如此,換是較有利,一一

之比假設並不成立(起碼對於文中那天才而言,1:0之比),而且,問題並沒有任何暗示或明示有

換與不換的比率是1:1之假設,缺乏這假設之支持下,勝出與落敗又怎會機會相等
Originally posted by PG-13 at 2007-3-16 01:17 AM:
...Without knowingly open the ( lose) door the host's probability of holding a winning door would be 1/2. Because in case of (lose, lose) with the porbability of having this set is 1/3 and in case of (win, lose) the porbability is 2/3.
So,withouth knowingly pick the set, the chance shall be [1/2x1/3 +1/2x2/3]=1/2
The problem has mentioned that the host knows what the doors without car are.As a

result,the condition for the host without knowingly opening the door is not applicable.

Besides,without knowingly open the ( lose) door the host's probability of holding a winning

door would be 1/2,Are you sure?

If the player chooses the right door,the host will not hold the right door.If the player

chooses the wrong door,there is 50 percents for the host opening the correct door(with

car).

Combining the above cases,the host's probability of holding a winning door would be

1/3x0+2/3x1/2=1/3which is equal to the player's probability of holding a winning door and

also the host's probability of opening a winning door.I hope I shall not misunderstand what

you mean.
Originally posted by at 2007-3-15 10:06 PM:

問題是...那麼另一個"都是女孩子"的機率是多少?
就是1/2了,如果是問組合的可能性,就1/3...
問組合的可能性也是1/2,男女與女男是重覆的,因為,當已知一個是女的情況下,男女與女男都=>另一個是男,重覆的組合當一個計算,排列(permutation)與組合(combination)是有分別的

[ Last edited by kaichun88 on 2007-3-16 at 05:44 PM ]
Originally posted by kaichun88 at 2007-3-16 15:59:

一係1/3(不換),一係2/3(換)

除非...
我根據而家大家討論個問題而去設計兩個問題出嚟,你叫番我去-----'read the question'b4 you comment on it.......你都幾攪笑

i asked the 2 questions and you should be the one to 'read the questions' and answer the 2 questions!
If you say that the first question is nonsense then you are telling me that you did not even know the reason why i asked the first question, or maybe you did not even know the answer of the very simple first question!!
If one can READ the 2 questions AND THINK carefully then one will know the reason for me to post the first question is to distinguish the different conditions.You can give answers to my questions if you can but I don't think you can say any of the questions is nonsense,unless you cannot answer them

You can of course give me different answers to the questions but with your explanation please.
Originally posted by playbr2 at 2007-3-16 12:23 AM:


係喎你岩

...
連或然率計算方法中最膚淺的謬誤也會犯,還敢稱智力過人?未兔貽笑大方
返回列表 回復 發帖
<<新主題 | 舊主題>>
娛樂滿紛 26FUN» 吹水版 » IQ大挑戰 » [機會率]經典IQ 數學題(大師級第五關)

重要聲明:26fun.com為一個討論區服務網站。本網站是以即時上載留言的方式運作,26fun.com對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本討論區受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者發現有留言出現問題,請聯絡我們。26fun.com有權刪除任何留言及拒絕任何人士上載留言,同時亦有不刪除留言的權利。切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。