<<新主題 | 舊主題>>
娛樂滿紛 26FUN» 吹水版 » IQ大挑戰 » [機會率]經典IQ 數學題(大師級第五關)
返回列表 回復 發帖
Originally posted by playbr2 at 2007-3-14 10:29 PM:


  right

...
唔明你問乜...
呢題好玩bor...........等我又吹下水先

首先我地用一個例子解釋點解正常情況選門下是會由三分之一變成二分之一先

(第一部分)假設我們有三度門......得一度門後面有車啦.....我們現在開始選門啦
之後在無人知道剩下那兩度未被選中的門後是什麼情況下開門啦(一擲千金開箱咁)......結果幸運地後面沒有車(出現此情況的機會率應該是三分之二)
在這種情況下剩下未開的兩度門有車的機會率都一起提升了由三分之一變成二分之一 (因為由三選一變成二選一)........

相反這次問題的情形不同.......因為主持是知道那兩度未被參加者選中的門後面有沒有車的情況下開門的.....佢將開到沒有車的機會率變成百分之百....

我們可從另一角度出發.....主持隨機地在剩下那兩度未被參加者選中的門中選擇出一度門來開....如果發現有車就重新再開另一度門.....咁將會出現兩種情況....

1. 開到沒有車然後停止再開(出現沒有車的機會率應該是三分之二)......即等同以上第一部分的解釋......在這情況下剩下另一度未被參加者選中的門的有車機會率即時提升到二分之一啦...

不過還有情況2.......開到有車(出現有車機率是三分之一)的情況......這時侯主持會將門關了再開另一度門來給你.......那剩下那度未被參加者選中的門這時有車機會率變成一了..........

將這兩種情況出現機率相加就會變成2/3*1/2+1/3*1=2/3........這就是剩下那度未被參加者選中的門的中獎機率

所以在這種情形下參加者之前所選中的門有車的機會率沒有提升....仍然是三分之一而另一度那度未被參加者選中的門則上升到三分之二了...所以換門中獎機會更高.....

又或者再用另一種角度看.......我們抽一個袋中有三個球....兩黑一白.....抽中白球就中獎啦......一開始你抽了一個球(白球機會率是三分之一)......然後有人幫你事先抽出剩下的兩顆球...抽中白球的機會率就是三分之一+三分之一....但他抽中了白球的話....他會將球放回袋中再抽一次直至出現黑球為止來讓你抽到那顆白球.....然後那人問你轉唔轉去選舉那個剩下在袋中的球.......在這情況下你就等同有人給了你機會一次過抽出剩下那兩個球去中白球了........所以換袋的中獎機會率就是三分之二啦有錯請指出..........

希望易明d啦..........再簡單d就係有人俾你轉選一個裝有剩下那兩個和你手上平等機會中獎的球的袋.......然後從中拎走左個一定唔中既....然後先再讓你抽出那顆球............中文表達理力不佳請見諒...........可能我只適合if...then +symbols

[ Last edited by 2000 on 2007-3-15 at 02:21 AM ]
Originally posted by kantang4910 at 2007-3-14 10:38 PM:
現在即係再來一次五個海盜分鑽石的問題,明明十分簡單,係要找個與眾不同的答案才是智者
開頭是三選一的機會,之後分明是二選一,自以為是智者的卻硬說是三份一同三份二的分別,
如果那個小女孩從未有標籤為智商二百幾,你咪話佢白痴一名
唔好被名牌所牽引

playbr2兄所講足球比賽,用亞州盤就易解釋
強隊要讓弱隊,那麽機會就拉平.而唔係優勝劣敗了
咁如果智商二百幾個故事係假既........但三份一同三份二之比係真既呢!!!!
Originally posted by hold_find at 2007-3-14 11:22 PM:

唔明你問乜...
上面個問題:

咁如果事物"本身"一樣呢?!?  例如係袋揀中白波同黑波既機率 , 開頭三分一 , 之後 各自都係二分一 機會率........ 但换轉揀門個case , 開頭三分一 , 之後 变成 自己嗰個只得三分一 , 另一個就有 三分二喎 !!!!

=======================================

講既揀中白波同黑波

引用 [A網友] 的文章

我覺得其實可以好簡單咁睇,個天才應該係錯的!!!
如果有一個袋,入面有2個黑波,一個白波.
咁揀中白波ge機會就係1/3,黑波就係2/3
之後攞走左個黑波出黎,依家個袋得返2個波
個位天才就話依家揀中黑波ge機會係2/3~
因為2個黑波ge機率集中o係一個到...
但其實揀中白波同黑波既機率,依家都一樣係 1/2

==================================================

揀球隊, 因為"本身"的性質不同, 所以冇得比較

但换轉去做上面文章個 test ,
開頭都係三分一揀中白波
而黑波同白波"本身"的性質相同  ............ right  
之後攞走左個黑波出黎 , 揀中白波既機率........ 會係1/2 right

而加换轉去做揀門個 test  ,
開頭都係三分一機會揀中對門
而門同門之間"本身"的性質相同
之後開一對空門 ,就會变成 自己嗰對門只得三分一機會有車 , 另一個對門就有 三分二機會有車

我就係問 , 而加選擇事物之本身的性質已經相同了(不像巴西比香港那樣) , 但為何 揀門個 test  同 揀白波個 test  機會率會吾一樣 ???
Originally posted by playbr2 at 2007-3-14 23:59:


咁如果智商二百幾個故事係假既........但三份一同三份二之比係真既呢!!!!
訴諸權威!!!!
Originally posted by playbr2 at 2007-3-15 12:24 AM:


上面個問題:
...
因為...佢計錯咗囉
我覺得應該係一樣,揀門同波都應該係1/2,由此至終我都係咁覺得
開頭3隻門都係"未知",有"同樣性質",所以大家都係1/3
開咗1隻空門,空門性質係"唔中",性質唔同咗,所以機會率變咗,變0,而空門的機會應該會分給其他相同性質的門
而另外2隻係"未知",性質相同,所以應該係同時分到空門佔有的機會率,而有同樣的機會率中,即係1/2
我唔覺得會有同樣"性質"但機會不同的情況(一隻門1/3,一隻門2/3)
Originally posted by 2000 at 2007-3-14 11:42 PM:
呢題好玩bor...........等我又吹下水先

首先我地用一個例子解釋點解會由三分之一變成二分之一先

(第一部分)假設我們有三度門......得一度門後面有車啦.....我們現在開始選門啦
之後在無人知道剩下那兩道門後是什麼情況下開門啦(一擲千金開箱咁)......結果幸運地後面沒有車(機會率應該是三分之二)
在這種情況下兩度門有車的機會率都一起提升了由三分之一變成二分之一........

相反這次情形不同.......因為主持是知道那兩度門後面有沒有車的情況下開門的.....佢將開到沒有車的機會率變成百分之百....我們可從另一角度出發.....主持隨機地在剩下的門中選擇出一度門來開....如果發現有車就重新再開另一度門.....咁佢會出現兩種情況....1.開到沒有車然後停止(出現機會率應該是三分之二)......啦即等同以上第一部分的解釋..咁剩下另一個門的機會率即時提升到二分之一啦...不過還有2.開到有車(出現機率是三分之一)的情況......這時侯主持會將門關了再開另一度門來給你.......那另一度門這時中獎機會率變成一了..........而如果將這兩種情況出現機率相加就會變成2/3*1/2+1/3*1=2/3

所以在這種情形下你之前所選舉的門有車的機會率沒有提升....仍然是三分之一而另一度門則上升到三分之二了........

又或者再用另一種角度看.......我們抽一個袋中有三個球....兩黑一白.....抽中白球就中獎啦......一開始你抽了一個球(白球機會率是三分之一)......然後又有人抽剩下的兩顆球啦...每次抽中白波的機會率仍然是三分之一....但你抽中了白波的話你會將球放回袋中再抽一次直至出現黑球為止.....那麼你就等同有人給了你機會抽出剩下那兩個球去中白球了........所以機會率就是三分之一*2啦有錯請指出
.................有d睇吾明你up 乜................再刨多幾次你篇野先

但你講既抽中白球 有 三分之一 定 二分之一 機會呢???
Originally posted by guswan at 2007-3-15 12:41 AM:

訴諸權威!!!!
話比你知.......背後支持e個題目既論点(2/3),更加權威!!!!
先引文一篇.... 摘自某網友

=====================================

以數學來看

假設三道門係A,B,C
揀左A
其中主持人宣布C係錯ge

一般人有一個錯覺
覺得A門後有車的機會率 = 不換然後win車的機會率
B門後有車的機會率 = 換然後win車的機會率
其實不然

沒錯,A/B門後有車的機會率 都是 1/2
而換的機會率卻是2/3而不換是1/3

可以這樣想
得四個情況可以發生
1)錯換錯
2)錯換對
3)對換錯
4)對換對

1)錯換錯
一開始錯的機會是2/3
但是當主持人宣布後,換門錯的機會是0
因此中獎機會係0

4)對換對
與1)情況相若 機會是0

2)對換錯
一開始對 = 1/3
宣布後換 變錯 = 1
不中獎機會 = 1/3

3)錯換對
一開始錯 2/3
宣布後換 變對 = 1
中獎機會 = 2/3

因此換門中獎機會 = 2/3
但不表示揀B門中獎 = 2/3
揀B門中獎仍是1/2,因為純計揀B門中的機會是無需理會之後做過甚麼的

當然,換門中獎機會只是大了,而不是必中  

============== 完 ===========================
Originally posted by hold_find at 2007-3-15 12:45 AM:

因為...佢計錯咗囉
我覺得應該係一樣,揀門同波都應該係1/2,由此至終我都係咁覺得
開頭3隻門都係"未知",有"同樣性質",所以大家都係1/3
開咗1隻空門,空門性質係"唔中",性質唔同咗,所以機會率變咗,變0,而空門的機會應該會分給其他相同性質的門
而另外2隻係"未知",性質相同,所以應該係同時分到空門佔有的機會率,而有同樣的機會率中,即係1/2
我唔覺得會有同樣"性質"但機會不同的情況(一隻門1/3,一隻門2/3)
Originally posted by hold_find at 2007-3-14 08:33 PM:

我覺得你漏咗一個condition,應該係
1.一開始choose 左"車",主持人then 開"空1"
2.一開始choose 左"車",主持人then 開"空2"
3.一開始choose 左"空1",主持人then 開"空2"
4.一開始choose 左"空2",主持人then 開"空1"
結果都係1/2
睇睇 #49 ......明吾明分別
返回列表 回復 發帖
<<新主題 | 舊主題>>
娛樂滿紛 26FUN» 吹水版 » IQ大挑戰 » [機會率]經典IQ 數學題(大師級第五關)

重要聲明:26fun.com為一個討論區服務網站。本網站是以即時上載留言的方式運作,26fun.com對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本討論區受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者發現有留言出現問題,請聯絡我們。26fun.com有權刪除任何留言及拒絕任何人士上載留言,同時亦有不刪除留言的權利。切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。