<<新主題 | 舊主題>>
娛樂滿紛 26FUN » 吹水版 » [轉]身份證號碼的秘密
返回列表 回復 發帖

[轉]身份證號碼的秘密

係香港,每一個居民都會獲發一張身份證,證上的號碼一共分為 3 個部分:第一個部分是由 1 個或 2 個英文字母所組成,第二部分是 6 個數目字,第三部分有 1 對括號,中間是 1 個數目字或者是英文字母 “A”。例如:“H856249(2)” 就是一個通常見到的身份證號碼了。
" a* h! M3 g0 U2 X8 D
1 p  H6 `/ P0 Q% N7 _相信年滿 30 歲的居民都會記得,大約在 20 年前,身份證號碼原本是沒有那個括號部分的,祇是某一年,政府更換了一張「電腦化」的身份證之後,才加上這個部分的。記得當年民間就流傳了很多傳聞,猜測那個括號中的數字,倒底有甚麼意義。(我亦曾經聽過一些傳說,十分可笑,但現在不一一細表了。)不過,自從有人在一些介紹趣味數學的刊物、網頁,又或者是一些電腦雜誌、教科書中解釋了這個括號中的數字是怎樣計算出來之後,這些傳聞就漸漸消失了。" ~$ \5 k! H9 @$ q3 ?
6 d3 L# @1 H, a% S7 B" o
+ e: V$ F9 }( P" h. m, P4 t& a3 J
原來,這個數字是用以下方法計算出來的:
7 t6 l! s, v6 L, _! k首先,我們將身份證號碼中第一部分的英文字母,按字母的次序轉換成一個數字。例如:“A” 就轉成 “1”,“B” 就轉成 “2”,其餘的如此類推。然後將身份證號碼中的每一個數字(包括由字母轉換成的數字),由左至右,分別乘以 8、7、6、5、4、3、2 等數值,並將結果加起來。(如果身份證號碼有 2 個英文字母,則第一個字母應該乘以 9,其他數字則同上。)8 p' M+ W2 f8 n  T8 M# ^5 h

  B* i; C/ q0 U2 p' p( V例如:我在上面提過的身份證號碼,如果不理括號裏面的數字,應該是 “H856249”。先將 “H” 轉換成 8,然後由左至右乘以上述的倍數並求和,得$ B* [: I7 Q- V/ C9 d' l
. Z/ L$ ~4 J7 m
8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 = 2181 G% Y: L7 Z- a$ M% n# O  f
$ i" K8 B4 p; W$ [6 J! ]
跟著就按以下的步驟計算出括號中的數字:先將上述的總和除以 11,如果整除,那麼括號內的數字就等於 0;如果有餘數,那麼就將 11 減該餘數,所得的差就是括號內的數字了。萬一那個差等於 10,就將括號內的數字定為 “A”。7 c+ k; Q' B( A! G9 H7 P

8 r2 t) z, H3 |6 G9 `2 t7 c3 m7 |例如:在上面的例子中,我們將 218 除以 11,得餘數 9,所以括號中的數字就等於 11 - 9 = 2,整個身份證號碼就變成 “H856249(2)” 了。
6 W& P5 A  `9 b. Y0 ?$ k7 a# S; t3 y# U2 r% _' i% Y1 D# `% I
又如果身份證號碼是 “H856049”,那麼總和將會是 210,餘數是 1,差是 10,所以括號中的數字就應該是 “A” 了。
! z# O( X0 A5 q+ K* ^; U# _1 a9 i7 w: m8 i, u2 }
原來身份證中的括號數字,就是這樣計算出來的!不過,大家有沒有想過,為甚麼我們要在原有的身份證號碼後面,加多 1 個數字呢?將身份證號碼裏的數字兜兜轉轉地計算一番,到底有甚麼意義呢?" i7 q0 E1 `7 M0 Y9 H7 M
. t( a& R" L' q- n4 Y) E/ L
我曾經讀過一些文章,解釋使用括號數字的原因,是為了防止非法入境者偽造身份證!文章作者表示:因為偽造身份證的歹徒並不知道身份證號碼的秘密,當警察在街上截查身份證時,可以通過以上的計算,分辨出身份證的真偽!
. f! l" ~7 l( S( C+ i$ _9 s' y$ u: ]4 s6 E
不消說,相信大家都會覺得以上的解釋荒謬之極!第一、既然我可以知道身份證號碼的計算方法,偽造身份證的人又怎可能不知?第二、相信大多數人在計算上述身份證號碼的總和與及餘數時,都會用計算機來輔助計算,我很懷疑在街上巡邏的執法人員,他們是否每一位都有如此強的心算能力,能夠即時進行上述的運算?故此,身份證號碼中的括號數字是用來仿偽的解釋,似乎並不合理。
' E. G' g) L$ S) ~! x# g/ ]
( k/ @5 ]! b, A  H) d, [4 @& y* X2 t那麼,這個數字又有甚麼用處呢?3 q( Q* ^! o, J. V9 h9 L
7 y8 s8 [+ T- e/ p+ X
大家知道,不同的人會有一個不同的身份證號碼,所以身份證號碼是一個用來識別巿民的最簡單方法。我們在日常生活之中,有無數的地方,都需要到這個號碼。正因為它簡單,亦正因為它重要,我們不應該在紀錄或抄寫的過程之中,將身份證號碼搞錯,否則可能會帶來非常嚴重的後果。
: ]4 B# X) M6 l- t( T8 E/ Z  D7 L/ h# V7 A' v* n" H
但在以前,當我們印發身份證的時候,所有號碼都是緊貼在一起的,例如:“H856249” 這號碼之前的 “H856248” 和之後的 “H856250” 都屬於另一個人。萬一我們誤將 “H856249” 錯寫為 “H856248”,那麼就會有麻煩了!但是,這祇是 1 個數字之差,我們亦不容易察覺到這個錯誤。/ ]3 f4 {  P. _. B
% v5 F+ c! b  E; V; X7 F
為了解決以上的問題,我們引入了一個括號數字,術語上,我們稱它為「核對數位」(check digit)。引入這個核對數位最簡單的目的,就是將原本緊逼在一起的號碼分開,因為我們祇會從 0 至 9 或 A 中選擇其中一個數字作為這個核對數位,所以每個身份證號碼之間,都會有 11 個數字的「距離」。( ?  k$ E# R' \
3 A% U  Y& m% U3 m- i+ s1 z/ z! \
第二、由於電腦的發明,當我們將資料輸入電腦時,我們同時可以指示電腦檢查那身份證的號碼是否正確,從而防止輸入資料時的人為錯誤。事實上,檢查身份證號碼是否正確的方法,比計算核對數位的方法直接得多,方法如下:* [* H9 d4 G9 u, u# C7 G; w4 J9 R+ K5 _
/ {' O  l! W! t  C& i% q
首先,我們依舊將身份證號碼中第一部分的英文字母轉換成數字。然後將身份證號碼中的每一個數字(包括核對數位),由左至右,分別乘以每個位的「位值倍數」,即 8、7、6、5、4、3、2 和 1(即將核對數位乘以 1),並將結果加起來,以後稱這個值為「核對值」。最後,將這個核對值除以 11。留意核對數位是將 11 減去前面 7 個位乘以其位值倍數之和除以 11 後的餘數,故此,連同核對數位計算出來的核對值,必定能夠被 11 整除。因此,如果我們發覺核對值不能被 11 整除,那麼輸入的身份證號碼就一定有錯了。(注意:電腦的運算速度非常之高,將身份證號碼輸入電腦後,一按鍵,它就可以完成有關的驗算,相信連使用電腦的人,亦不會察覺到電腦其實已做了很多次的計算!)4 R" Y! ^/ T6 w, A

) P# C/ v# @+ r- k- T/ b6 C例如:“H856249(2)” 是一個正確的號碼,按上述方法計算出的核對值等於) n& H8 O$ R1 c& v+ v# E8 k8 y
: S* n; x8 q9 H& f" A
8 ´ 8 + 8 ´ 7 + 5 ´ 6 + 6 ´ 5 + 2 ´ 4 + 4 ´ 3 + 9 ´ 2 + 2 ´ 1 = 2203 j7 Y  _; Q+ l3 W$ P2 r" S9 O
. G, T$ K" e/ E9 W
明顯這個數能夠被11所整除。假如在輸入資料時,將其中 1 個位的數字或字母搞錯,例如:變成 “K856249(2)”、“H856049(2)” 或 “H856249(A)”,那麼計算出來的核對值就會分別變成 244、212 和 228。由於這些數值不能被 11 整除,因此我們便知道這些號碼有錯了。
8 [( ]6 q5 B9 B0 {: O8 B2 z' x& _2 ?) q% G' o4 C% c
事實上,如果一個身份證號碼的正確核對值為 A,而在輸入資料時,(由右邊數起的)第 k 個位原本是 a,但現在錯入成 b(a ¹ b),那麼該核對值將會變成
' ?) y5 [( k2 z8 r% K- ~8 _: x& o7 Z5 s8 L( s2 {
A - a ´ k + b ´ k = A + (b - a) ´ k 5 t& w" V4 N8 Z" H( W3 r
, S; }/ w4 T3 i
留意在這裏,除非錯誤發生在第一個位的英文字母上,否則 (b - a) 的絕對值和k都祇會是 1 至 10 之間的數字,不會大於 11,故此 (b - a) ´ k 這個部分,不可能被 11 整除。但因為 A 本身可以被 11 整除,所以整個核對值 A + (b - a) ´ k,便不能被 11 所整除了。由此可以知道輸入的資料有錯。
! B/ P6 Q5 D; A5 t; N& [8 t' }
0 k; p+ S5 }+ G: l/ N9 X當然,應用核對值的方法有一個死穴,就是頭一個字母如果錯入了一個和原本字母相隔 11 個位的字母,例如:將 “H856249(2)” 錯入成 “S856249(2)”(其核對值為 308,可以被 11 整除),那麼電腦亦無法知道到輸入的資料有錯了。不過,相信發生如此錯誤的機會極之小,所以這個方法亦相當可靠。  c: C; T' w6 z

( ]/ f% I9 ?6 D: w% X& K還有,如果輸入資料時出現 2 處或以上的錯誤,例如:將 “H856249(2)” 錯入成 “H856049(A)”,我們亦無法將錯誤檢查出來。(當然,如果太容易出現 2 處的輸入錯誤,那麼我認為最佳的解決辦法,就是辭退那位輸入員,改聘另一位更可靠的人選了!)
( m& }; x) ?( J% F% e
. P% o' ?0 ^/ U+ D5 T, c) Z8 I另一個秘密 " f- d0 ^2 P! f8 K+ g
留意在上面的討論中,那個位值倍數其實沒有多大的作用。事實上,如果我們不乘上任何倍數而直接將所有數位加起來,再定出一個核對數位,我們依然可以檢查出輸入資料時(1 處)的錯誤。那麼,我們為甚麼需要加入這個位值倍數呢?% u7 W- x) ~- y5 q

+ ~, h0 r+ H' i7 L7 Y/ k1 f原來這亦是用來防止一般人一個容易犯上的錯誤,這就是誤將其中的兩個數字的位置對調。例如:將 “H856249(2)” 錯誤地變成 “H856294(2)”。- d% i  H' ]5 ^

5 z; a! u9 P4 `& ~0 X0 }" L我們再假設正確身份證號碼的核對值為 A,第 k 位的數字為 a,第 k + n 位的數字為 b(a ¹ b;n ³ 1),如果我們錯誤地將 a、b 兩個數字對調了,那麼該核對值便會變成) r8 B% C: a' i7 D

: P: A+ t  }! d$ ^. F2 i; t0 J, wA - a ´ k - b ´ (k + n) + a ´ (k + n) + b ´ k = A + (a - b) ´ n
8 Z4 q% S! g1 w% q4 _$ Y4 F6 {+ Y. q
同理,a、b 和 n 都祇會是 0 至 9 之間的數字,故此 (a - b) ´ n 這個部分,以至是整個核對值,都不能被 11 所整除,由此可以知道輸入的資料有錯了。留意如果沒有這個位值倍數,我們就無法偵測出這種錯誤了。
  Q' m4 l  m% c# g+ l5 {' V/ O' K8 b; g5 |5 ^, w+ }
總而言之,身份證號碼中的核對數位,是一個簡單但非常聰明的設計,它可以讓我們很容易地偵測出輸入資料時的兩種常犯的錯誤,從而確保資料的可靠性。在整個過程中,亦請大家細心欣賞 11 這個數字的功用。由於 11 是一個質數(而且剛好大於 10),任何兩個小於它的數字相乘,都不能被它所整除,所以才能夠在上述運算中,找到輸入時的錯誤。如果換了一個合成數,情況就不同了。例如:12,我們知道 4 和 6 都小於 12,但 4 ´ 6 的結果,卻能被 12 所整除,因此 12 不可以用來做核對過程中的除數。$ c' l$ M+ U1 J& f8 @3 P% }

+ O3 G0 O  E$ @/ l! Q最後,個人認為,既然核對數字已經成為身份證號碼中一個不可或缺的一部分,故此我們其實亦不必將它特別地指明,以一對括號將它括起來。更何況,將它括起來後,更會引起一些不知情的人胡亂猜測,實在無謂。故此,我提議政府在改發新的身份證明文件的同時,將這一對括號刪去。這不是更好的嗎?
返回列表 回復 發帖
<<新主題 | 舊主題>>
娛樂滿紛 26FUN » 吹水版 » [轉]身份證號碼的秘密

重要聲明:26fun.com為一個討論區服務網站。本網站是以即時上載留言的方式運作,26fun.com對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本討論區受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者發現有留言出現問題,請聯絡我們。26fun.com有權刪除任何留言及拒絕任何人士上載留言,同時亦有不刪除留言的權利。切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。